

EXAM. DATE.: 02-05-2025 FN (10:00AM TO 1:00PM)

MATHS

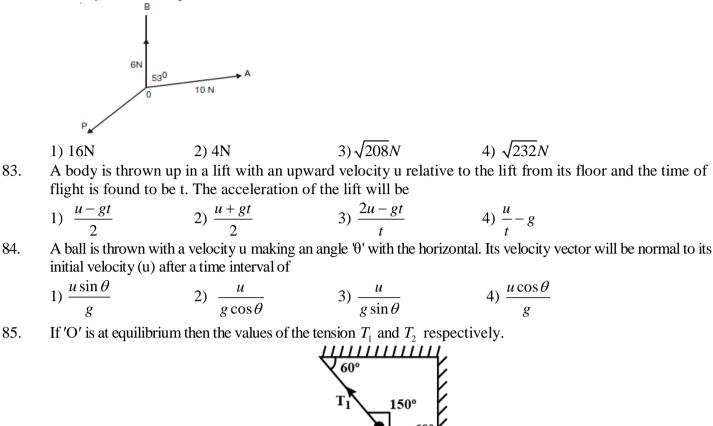
1.	If $A = (3,81)$ and $f: A \to B$ is a surjection defined by $f(x) = \log_3 x$ then $B =$							
	1) [1,4]	2) (1,4]	3) (1,4)	4) $\left[1,\infty\right)$				
2.	If $f(x) = \frac{x}{\sqrt{1+x^2}}$ then for $f(x) = \frac{1}{\sqrt{1+x^2}}$							
		$2) \frac{x}{\sqrt{1-x^2}}$	$3) \ \frac{2x}{\sqrt{1+2x^2}}$	$4) \ \frac{x}{\sqrt{1+x^2}}$				
3.	$\forall n \in \mathbb{N}, \frac{n^4}{24} + \frac{n^3}{4} + \frac{11}{22}$	$\frac{\ln^2}{24} + \frac{n}{4}$ is a						
	1) Rational Number	24 4	3) Natural Number	4) Real Number				
4.	If A is a square matr	ix of order 3 then $ Adj $	$\left (Adj A^2) \right =$					
	1) $ A ^2$	2) $ A ^4$	3) $ A ^{8}$	4) $ A ^{16}$				
5.	Given $a_i^2 + b_i^2 + c_i^2 =$	$1(i=1,2,3)$ and $a_i a_j$	$+b_ib_j + c_ic_j = 0 (i \neq j, i, j)$	j = 1, 2, 3) then the value of				
	$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ is							
	1) 0	2) $\frac{1}{2}$	3) ±1	4) 2				
6.	The system of equation $3x + 2y + z = 6$, $3x + 4y + 3z = 14$ and $6x + 10y + 8z = a$, has infinite number of							
	solutions, if <i>a</i> is equ 1) 8	al to 2) 12	3) 24	4) 36				
7.	Matrix A is given by	$A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$ then the	determinant of A^{2015} –	$-6A^{2014}$ is				
	1) 2^{2016}	2) $(-11)2^{2015}$	3) $-2^{2015} \times 7$	4) (-9)2 ²⁰¹⁴				
8.	If $\overline{p} = \overline{i} + a\overline{j} + \overline{k}$ and	2) $(-11)2^{2015}$ $\bar{q} = \bar{i} + \bar{j} + \bar{k}$, then $ \bar{p} +$	$\left \overline{q} \right = \left \overline{p} \right + \left \overline{q} \right $ is true for	r				
	1) $a = -1$	2) $a = 1$ 3) all	real values of 'a'	4) for no real values of a'				
9.	The vector \bar{c} directed along the internal bisector of the angle between the vectors $2\bar{i}+3\bar{j}-6\bar{k}$ and							
	$-2\overline{i} - \overline{j} + 2\overline{k}$ with $ \overline{c} = 10\sqrt{21}$ is							
	1) $\pm \left(-8\overline{i}+2\overline{j}-4\overline{k}\right)$	1) $\pm \left(-8\overline{i}+2\overline{j}-4\overline{k}\right)$ 2) $\pm 10\left(-4\overline{i}+\overline{j}-2\overline{k}\right)$						
	$3) \pm \left(-12\bar{i} + 3\bar{j} - 6\bar{k}\right)$	4) $\pm (12\overline{i} + 3\overline{j})$	$\overline{i} + 6\overline{k}$					
10.	The orthogonal projection of $\overline{a} = 2\overline{i} + 3\overline{j} + 3\overline{k}$ on $\overline{b} = \overline{i} - 2\overline{j} + \overline{k}$ (where \overline{i} , \overline{j} , \overline{k} are unit vectors along three mutually perpendicular directions) is							

	1) $\frac{-i+2j-k}{6}$	$2) \ \frac{-i+2j-k}{\sqrt{6}}$	3) $\overline{i} - 2\overline{j} + \overline{k}$	$4) -\overline{i} + 2\overline{j} - \overline{k}$				
11.	If $\overline{A}.(\overline{B}+\overline{C}) = \overline{B}.(\overline{C}+\overline{C})$	$(\overline{A}) = \overline{C}.(\overline{A} + \overline{B}) = 0$ and	$\left \overline{A}\right = 3, \left \overline{B}\right = 4$ and	$\left \overline{C}\right = 5 \text{ then } \left \overline{A} + \overline{B} + \overline{C}\right =$				
12.	1) 5 The angle between t through $A(0,0,0), B$	he plane passing throug	3) $5/\sqrt{2}$ gh the points $A(0,0,0)$	4) $\sqrt{2}$, <i>B</i> (1,1,1), C(3,2,1) & the plane passing				
	1) 90°	2) 45°	3) 120 [°]	4) 30 [°]				
13.	If $\overline{a} = 2\overline{i} + 2\overline{j} + \overline{k}, \overline{b} =$	$=5\overline{i}+\overline{j}+2\overline{k}$ then $ \overline{a}\times\overline{b} $	$\Big ^2 + \left(\overline{a}.\overline{b}\right)^2 =$					
	1) 270	2) 120	3) 170	4) 110				
14.	If $0 \le x \le \pi, 81^{\sin^2 x} +$	$81^{\cos^2 x} = 30$ then $x =$						
	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{15}$	4) $\frac{\pi}{8}$				
15.	In a ΔPQR , $\underline{R} = \frac{\pi}{2}$	if $\tan\left(\frac{P}{2}\right)$ and $\tan\left(\frac{Q}{2}\right)$	$\left(\cdot \right)$ are the roots of the o	equation $ax^2 + bx + c = 0(a \neq 0)$ then				
	1) $a+b=c$		3) $a + c = b$					
16.		naximum values of sin [*]						
	1) $-\frac{1}{2}, \frac{1}{2}$	2) $\frac{1}{2}$,1	3) $\frac{1}{2}, \frac{3}{2}$	4) $\frac{3}{2}$, 2				
17.	If $0 \le x \le 2\pi$ and $ \cos x \le \sin x$, then							
	1) $x \in \left[0, \frac{\pi}{4}\right]$	2) $x \in \left[\frac{\pi}{4}, 2\pi\right]$	$3)\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$	4) $[0,\pi]$				
18.	If $x^2 + y^2 + z^2 = r^2$ t	hen $\tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{xy}{zr}\right)$	$\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) =$					
	1) <i>π</i>	2) $\frac{\pi}{2}$	3) 0	4) $\frac{\pi}{4}$				
19.	If r_1, r_2, r_3 are the rad	dii of the escribed circle	es of a $\triangle ABC$ and if r	is the radius of its incircle then				
	$r_1r_2r_3 - r(r_1r_2 + r_2r_3 + r_3r_1) =$							
	1) 0	2) 1	3) 2	4) 3				
20.	In an equilateral tria	-						
	1) 1:1:1	2) 1: $\sqrt{2}$:3	3) 1:2:3	4) 2:√3:√3				
21.	If $\left z - \frac{4}{z}\right = 2$ then the	ne maximum value of	z is					
	1) $\sqrt{5}$	2) $\sqrt{5} + 1$	3) $\sqrt{5}$ -1	4) -\sqrt{5}				
22.	,		e three points forming	4) $-\sqrt{5}$ a triangle ABC in the Gussain plane				
	then triangle ABC is 1) equilateral	2) isosceles	3) scalene	4) Right angled				
23.	If $\log_{\sqrt{3}} \left \frac{ z ^2 - z + 1}{ z + 2} \right $.	< 2 then locus of z is						
	1) a circle		3) interior of the circ	· •				
24.	If α, β are the roots	of the equation $x^2 - 2x$	$\alpha^{5} + 4 = 0$, then $\alpha^{5} + \beta^{5}$	=				

	1) 64	2) 32	3) -32	4) -64					
25.	The minimum value	$e x + \left x + \frac{1}{2}\right + \left x - 3\right + \left x\right $	$\left(-\frac{5}{2}\right)$ is						
		1 -1 1	-1	4) 4					
26.	The equation $(x-3)$	2) 4) ⁹ + $(x-3^2)^9$ + $(x-3^3)$	$(y^{9} + + (x - 3^{9}))^{9} = 0$ has	as					
	1) all the roots are r		2) one real and 8 im						
	3) real roots namely	2	4) five real and 4 in						
27.	· · ·								
	If α , β , γ are the roots of the equation $x^3 - x + 2 = 0$ then the equation whose roots are $\alpha\beta + \frac{1}{\gamma}, \beta\gamma + \frac{1}{\alpha}, \gamma\alpha + \frac{1}{\beta}$ is								
	1) $2y^3 + y^2 + 1 = 0$	2) $2y^3 - y^2 + 1 = 0$	3) $y^3 + y^2 + 1 = 0$	4) $2y^3 + y^2 - 1 = 0$					
28.	Number of real root	ts of the equation $(x^2 - x^2)$	$(-5x+1)(x^2+x+1)+8x$	$x^2 = 0$					
	1) 1	2) 2	3) 3	4) 4					
29.			Mangoes. The number	of ways a person make selection of					
	fruits from the bask 1) 209	2) 210	3) 211	4) 212					
30.	A class contains 4 b	ooys and 'g' girls. Ever	y Sunday five students	s, including at least three boys go for a					
	-	• • •	•	ing, the picnic, the class teacher gives $ad_{1} = ad_{2} = ad_{2$					
	1) 15	2) 12	3) 8	ed was 85, then value of 'g' is 4) 5					
31.	,	s in which 52 cards car	,	·					
	1) $\frac{52!}{$	2) $\frac{52!}{4!(13!)^4}$	3) 52!	4) $\frac{52!}{13!4^{13}}$					
	(101)		4 ¹³	13!4 ¹³					
32.	$\frac{7}{5} \left(1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} \right)$	$+\frac{1.3.5}{1.2.3}\cdot\frac{1}{10^6}+\dots\infty$ =							
	1) $\sqrt{2}$	 2) 2√2 	3) $2^{\frac{1}{3}}$	4) $\sqrt{\frac{2}{3}}$					
33.	Coefficient of x^2 in	the expansion of $(1 +$	$3x-2x^{3})^{10}$						
	1) 62640		3) 65640	4) 62330					
34.	Coefficient of x^4 ir	the expansion of $\frac{1}{(x+x)}$	1						
				21					
	1) $\frac{1}{32}$	2) $\frac{11}{32}$	3) $\frac{21}{32}$	4) $\frac{31}{32}$					
35.	The mean of two sa	mples of sizes 200 and	1 300 were found to be	25, 10 respectively. Their standard					
		nd 4 respectively. The 2×65.2		-					
36.	1) 64 Suppose a population	2) 65.2 on A has 100 observation	3) 67.2 ons 101.102 200	4) 64.2 and another population B has 100					
				riances of the two populations,					
	respectively, then V		~ ~	· · /					
	1) 1	$\begin{array}{c} 2 \\ 2 \\ 9 \\ 4 \end{array}$	$3) 4/_{-}$	4) $\frac{2}{3}$					
37.	,	/ +		75					
57.	37. If the letters of word 'PROBABILITY' are arranged at random. The probability that1) relative position of vowels and consonants remains unaltered.								
	2) the order of vowels remains the same.								
	3) the order of vowels and consonants remains the same in the same order is								

	1) $\frac{4!7!}{11!}$, $\frac{1}{12}$, $\frac{(2!2!)}{(4!7!)}$ 2) $\frac{4!7!}{11!}$, $\frac{1}{11}$, $\frac{(2!2!)}{(4!7!)}$							
	3) $\frac{4!7!}{11!}$, $\frac{1}{10}$, $\frac{(2!2!)}{(4!7!)}$ 4) $\frac{4!7!}{11!}$, $\frac{1}{21}$, $\frac{(2!2!)}{(4!7!)}$							
38.								
30.	Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice with six faces (number 1 to 6) and let $E_k = \{(a,b) \in S : ab = k\}$ for $k \ge 1$. If $p_k = P(E_k)$ for $k \ge 1$							
	then correct among the following, is							
	1) $p_1 < p_{30} < p_4 < p_6$ 2) $p_{36} < p_6 < p_2 < p_4$							
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
39.	E_1, E_2 are events of a sample space such that							
	$P(E_1) = \frac{1}{4}, P\left(\frac{E_2}{E_1}\right) = \frac{1}{2}, P\left(\frac{E_1}{E_2}\right) = \frac{1}{4}, Then P\left(\frac{\overline{E_1}}{E_2}\right) =$							
	1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 3) $\frac{2}{2}$ 4) $\frac{3}{4}$							
40.	3 4 3 4 In a business venture a man can make a or profit of Rs. 2000/- with probability of 0.4 or have loss of							
10.	Rs. 1000/- with probability 0.6. His expected profit is							
	1) Rs. 800 2) Rs. 600 3) Rs. 200 4) Rs. 400							
41.	The vertices of a triangle are $(1,\sqrt{3})$ $(2\cos\theta,\sin\theta)$ and $(2\sin\theta,-2\cos\theta)$ where $\theta \in R$. The locus of							
41.	The vertices of a triangle are $(1,\sqrt{3})$, $(2\cos\theta,\sin\theta)$ and $(2\sin\theta,-2\cos\theta)$ where $\theta \in R$. The locus of orthogeneous of the triangle is							
	orthocenter of the triangle is 1) $(x-1)^2 + (y-\sqrt{3})^2 = 4$ 2) $(x-2)^2 + (y-\sqrt{3})^2 = 4$							
	3) $(x-1)^{2} + (y-\sqrt{3})^{2} = 8$ 4) $(x-2)^{2} + (y-\sqrt{3})^{2} = 8$							
42.	If the square ABCD where $A(0,0), B(2,0), C(2,2)$ and $D(0,2)$ undergoes the following three transformations successively							
	i) $f(x,y) \rightarrow (y,x)$ ii) $f(x,y) \rightarrow (x+2y,y)$ iii) $f(x,y) \rightarrow (x-y,x+y)$							
	i) $f_1(x,y) \rightarrow (y,x)$ ii) $f_2(x,y) \rightarrow (x+3y,y)$ iii) $f_3(x,y) \rightarrow \left(\frac{x-y}{2}, \frac{x+y}{2}\right)$							
	then the final figure is:							
43.	1) square 2) parallelogram 3) rhombus 4) rectangle The acute angle bisector between the lines $3x-4y-5=0$, $5x+12y-26=0$ is							
	1) $7x-56y+32=0$ 2) $9x-3y+13=0$ 3) $14x-112y+65=0$ 4) $7x-13y+9=0$							
44.	The line joining the points $A(3,0)$ and $B(5,2)$ is rotated about A in the anticlockwise direction through							
	an angle of 15° . If B goes to C in the new position now the line joining A and C is rotated about A in							
	the anticlockwise direction through an angle of 45° of C goes to D in the new position, then the coordinates of D are							
	1) $(4-\sqrt{3},\sqrt{3}-1)$ 2) $(4+\sqrt{3},\sqrt{3}-1)$ 3) $(4-\sqrt{3},\sqrt{3}+1)$ 4) $(4+\sqrt{3},\sqrt{3}+1)$							
45.	If $4a^2 + 9b^2 - c^2 + 12ab = 0$ then the family of straight lines $ax + by + c = 0$ is concurrent at							
	1) $(2,3)$ or $(-2,-3)$ 2) $(2,-3)$ or $(-2,6)$ 3) $(-2,-4)$ or $(-2,3)$ 4) $(2,5)$ or $(-1,-5)$							
46.	In a $\triangle ABC$ the mid points of the sides AB, BC, CA are respectively $(l, 0, 0), (0, m, 0)$ and $(0, 0, n)$. Then							
	$\frac{AB^2 + BC^2 + CA^2}{l^2 + m^2 + n^2} =$							
	$l^2 + m^2 + n^2$ 1) 2 2) 4 3) 8 4) 16							

47. 1) 2 2) 4 3) 8 4) 16 47. The angle between the diagonals of the parallelogram formed by the points (1,2,3),(-1,-2,-1),(2,3,2),(4,7,6) is


$$\begin{aligned} 1) \cos^{-1}(7) & 2) \cos^{-1}\left(\frac{7}{\sqrt{155}}\right) & 3) \cos^{-1}\left(\frac{7}{\sqrt{465}}\right) & 4) \cos^{-1}\left(\frac{7}{465}\right) \\ 48. A variable plane intersects the coordinate 'p' from O (0,0,0). Then the locus of the centroid of the tetrahedron OABC is
1) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2} & 2) \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{4}{p^2} \\ 3) \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2} & 4) \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 16p^2 \\ 49. \lim_{t \to t^{-1}} \left[\frac{[x]^3}{3} - \left[\frac{x}{3} \right]^3 \right]^{t}$ is (where [] is GIF)
1) 0 $2) \frac{64}{27} & 3) \frac{8}{3} & 4) \frac{10}{3} \\ 50. \lim_{t \to t^{-1}} \left(\frac{a^{1/x} + b^{1/x} + c^{1/x}}{3} \right)^{t} = (where a, b, c are real and non - zero) \\ 1) 0 & 2) (abc)^{1/x} & 3) (abc)^{1/3} & 4) 1 \\ 51. Let f: R \to R be defined by $f(x) = \begin{cases} a + \frac{\sin(x)}{x} & , if \quad x > 0 \\ 2 & , if \quad x = 0 \end{cases}$ where [x] denotes the integral part $\beta + \left[\frac{\sin x - x}{x^3} \right] , if \quad x < 0 \\ 2 & , if \quad x = 0 \end{cases}$ of x. If f continuous x = 0, then $\beta - \alpha = 1 \\ 1) -1 & 21 & 3 \end{pmatrix} 0 & 4) 2 \\ 52. Let f(x) = a \sin|x| + be^{1/x}$ is differentiable when
1) $a = -b & 2) a = b & 3) a = 0 & 4) b = 0 \\ 53. If \frac{d}{dx} \left(\frac{1+x^3 + x^4}{1+x+x^4} \right) = ax + b, then (a, b) = 1 \\ 1) (-1, 2) & 2) (-2, 1) & 3) (2, -1) & 4) (1, 2) \\ 54. Let f(x) = \left| \frac{\cos x - x - 1}{1 \tan x - x - 1} \right| x + \frac{1}{x^4} - \frac{1}{x^4} - \frac{2}{x^4} - \frac{1}{x^4} - \frac{$$$$

58.	Let $h(x) = f(x) - [f(x)]^2 + [f(x)]^3$ for ev	very real number x the	en				
	 h is increasing whenever f is increasing h is decreasing whenever f is increasing Nothing can be said in general 						
59.	3) has decreasing whenever f is increasing 4) Nothing can be said in general If $-4 \le x \le 4$ then critical points of $f(x) = x^2 - 6 x + 4$ are						
57.	1) $3,-2$ 2) $6,-6$		4) 0,1,3				
60.	The value of θ in the Lagrange's mean va	, , , ,	, , , ,				
	1) $\frac{1}{3}$ 2) $\sqrt{\frac{19}{56}}$	3) $\sqrt{\frac{19}{3}} + 2$	(1) $\sqrt{19}$ 2				
	e (20	15	15				
61.	The least distance of the line $8x - 4y + 73$						
		3) 3√5					
62.	If $(1,1), (k,2)$ are conjugate points with respectively.	pect to the circle x^2 +	$y^2 + 8x + 2y + 3 = 0$, then k =				
	1) -12 2) -12/7						
63.	The center of the circle circumscribing the $3x + y = 62$ is	e square whose three s	ides are $3x + y = 22, x - 3y = 14$ and				
	-		(2)				
	1) $\left(\frac{3}{2}, \frac{27}{2}\right)$ 2) $(16, -6)$	3) (27,3)	4) $\left(1,\frac{2}{3}\right)$				
64.	The lengths of the tangent drawn from any	point on the circle 1	$5x^2 + 15y^2 - 48x + 64y = 0$ to the two				
	circles $5x^2 + 5y^2 - 24x + 32y + 75 = 0$ and	$5x^2 + 5y^2 - 48x + 64y$	+300=0 are in the ratio of				
	1) 1:2 2) 2:3	-)	4) 4:5				
65.	Two circles of radii r and R intersect at an $2rR\sin\theta$ $2rR\sin\theta$						
	1) $\frac{2rR\sin\theta}{\sqrt{r^2+R^2-2rR\cos\theta}}$ 2) $\frac{2rR\sin\theta}{\sqrt{r^2+R^2}}$	$= 3) \frac{2\pi \sin \theta}{\sqrt{R^2 - r}}$	$\frac{1}{2}$ 4) $\frac{2\pi \sin \theta}{\sqrt{r^2 + R^2 + 2rR\cos \theta}}$				
66.	If the join of ends of the latusrectum of x^2	•	•				
00.	$\cos \theta =$	of subtenus un ung					
	1) $\frac{-4}{5}$ 2) $\frac{-2}{3}$	3) $\frac{-3}{5}$	4) $\frac{-1}{5}$				
67.	The focus of a parabola is $(1, 2)$ and the p	5	5				
07.	the equation of the parabola is $(1, 2)$ and the p		the uncerta and axis is $(2,3)$. Then				
	1) $(x-1)^{2} + (y-2)^{2} = \frac{1}{4}(x+y-5)^{2}$	2) $(x-1)^{2} + (y-2)^{2}$	$y^{2} = \frac{1}{x^{2}}(x+y-5)^{2}$				
	•		2				
	3) $(x-1)^{2} + (y-2)^{2} = \frac{1}{5}(x+y-5)^{2}$		25				
68.	The eccentricity of the conic represented b	by $\sqrt{(x+2)^2 + y^2} + \sqrt{(x+2)^2 + y^2}$	$(x-2)^2 + y^2 = 8$ is				
	1) 1/3 2) 1/2	3) 1/4	4) 1/5				
69.	A bridge is in the shape of a semi ellipse it middle point. The height of the bridge at a						
	1) 4mts 2) 2mts	3) 8mts	4) 6mts				
70.	Let the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{7} = 1$ and	the hyperbola $\frac{x^2}{x}$	$\frac{y^2}{z} = \frac{1}{z}$ coincide. Then the length of				
70.		144 144	α 25 contract. Then the tength of				
	the latus rectum of the hyperbola is $1) \frac{32}{2} = 2) \frac{18}{8}$	₂₎ 27	4) 27				
)	3) $\frac{27}{4}$	10				
71.	If $\int \frac{\sin 2x}{a^2 \cos^2 x + b^2 \sin^2 x} dx = k \cdot \log \left a^2 \cos^2 x \right ^2$	$x+b^2\sin^2 x + c$, then	<i>k</i> =				

1)
$$\frac{1}{b^2 - a^2}$$
 2) $\frac{1}{(b^3 - a^2)^2}$ 3) $\frac{1}{a^2 - b^2}$ 4) $\frac{1}{a^2 + b^2}$
72. If $\int \frac{1}{\sqrt{x^2 + x + 1}} dx = a \sinh^{-1}(bx + c) + d$, then descending order of a, b, c is
1) a, b, c 2) b, c, a 3) b, a, c 4) c, a, b
73. $\int \frac{\sin^2 x.\sec^2 x + 2\tan x.\sin^2 x\sqrt{1 - x^2}}{\sqrt{1 - x^2}} dx =$
1) $(\cos^2 x) (\sin^2 x) + c$ 2) $(\sin^2 x) (\sin^2 x) + c$
3) $(\sec^2 x) (\cos^3 x) + c$ 4) $(\sec^2 x) (\tan^3 x) + c$
74. $\int (1 + x - x^3) e^{ixx^2} dx =$
1) $(x + 1)e^{ix^3 + x} dx =$
1) Statement - 1 is true, Statement - 1 is true:
Statement - 1 is true, Statement - 1 is true:
Statement - 1 is true, Statement - 1 is true:
Statement - 1 is True, Statement - 1 is True.
76. $\int_{1}^{2^2} \frac{dx}{\sqrt{1 + x^{4s}}}$
1) $\frac{2}{5}(\sqrt{17} + \sqrt{2})$ 2) $\frac{2}{5}(\sqrt{17} - \sqrt{2})$ 3) $\frac{5}{2}(\sqrt{17} - \sqrt{2})$ 4) $\frac{5}{2}(\sqrt{17} + \sqrt{2})$
77. Area of the region $\frac{1}{(x, y)/x^2 + y^3 \le 1 \le x + y}$ is
1) $\frac{\pi}{4} + \frac{1}{2}$ 2) $\frac{\pi}{4} - \frac{1}{2}$ 3) $\frac{\pi}{4} + \frac{3}{4}$ 4) $\pi + 1$
78. The differential equation representing the family curves $y^2 = 2c(x + \sqrt{c})$ when 'c' is a parameter is of
1) degree 4 2) order 2 3) degree 3 4) degree 1
79. The solution to the DE $\frac{x^4x}{x^2 + y^2} = \left(\frac{y}{x^2 + y^2} - 1\right) dx$ is
1) $y = x \cos(c - x) - 2) \cos^{-1}\left(\frac{y}{x}\right = -x + c$ 3) $y = x \tan(c - x)$ 4) $\frac{y^2}{x^2} = x \tan(c - x)$
80. At present a firm is manufacturing 2000 items. It is estimated that the trate of change of production P with additional number of workers i is given by $I = AT^{4}c^{4 (d x \pi)}$. The dimensional formula for AB

2) *k T*

82. If the system is in equilibrium ($\cos 53^\circ = 3/5$), then the value of ' P ' is

body will have the maximum velocity when 1) $x = 2 \tan \theta$ 2) $x = \frac{2}{\tan \theta}$ 3) $x = \sqrt{2} \cot \theta$ 4) $x = \frac{\sqrt{2}}{\cot \theta}$ The PE of a 2 kg particle, free to move along x-axis is given by $V(X) = \left(\frac{X^3}{3} - \frac{X^2}{2}\right)J$. The total

A body is moving down a long inclined plane of angle of inclination θ the coefficient of friction

between the body and the plane varies as $\mu = 0.5x$, where x is the distance moved down the plane. The

3) $20\sqrt{3}N, 20\sqrt{3}N$

4) 10N, 30N

87.

mechanical energy of the particle is 4 J. Maximum speed of particle (in ms^{-1}) is

1)
$$\frac{1}{\sqrt{2}}$$
 2) $\sqrt{2}$ 3) $\frac{3}{\sqrt{2}}$ 4) $\frac{5}{\sqrt{6}}$

2) $20\sqrt{3}N, 20N$

1) 20N,30N

86.

88. A tennis ball bounces down a flight of stairs, striking each step in turn and rebounding to the half of height of the step. The coefficient of restitution is

1)
$$\frac{1}{2}$$
 2) $\frac{1}{\sqrt{2}}$ 3) $\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$ 4) $\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{4}}$

89. The radius of a solid sphere is R and its density D. When it is made to rotate about an axis passing through any diameter of sphere, then the expression for its moment of inertia is

1)
$$\frac{8}{7}\pi DR^5$$
 2) $\frac{8}{15}\pi DR^5$ 3) $\frac{28}{15}\pi DR^5$ 4) $\frac{28}{5}\pi DR^5$

90. The coefficient of linear expansion of an inhomogeneous rod change linearly from α_1 to α_2 from one end to the other end of the rod. The effective coefficients of linear expansion of rod is

1)
$$\alpha_1 + \alpha_2$$
 2) $\frac{\alpha_1 + \alpha_2}{2}$ 3) $\sqrt{\alpha_1 \alpha_2}$ 4) $\alpha_1 - \alpha_2$

91. In two vessels of same volume, atomic hydrogen and helium at pressure 1 atm and 2 atm are filled. If the temperature of both the samples is same, then average speed of hydrogen atom (C_H) will be related to helium (C_{He}) as

1)
$$C_H = \sqrt{2}C_{He}$$
 2) $C_H = C_{He}$ 3) $C_H = 2C_{He}$ 4) $C_H = \frac{C_{He}}{2}$

92. The heat energy required to vapourise 5kg of water at 373 K is

1) 2700 kcal 2) 1000 kcal 3) 27 kcal 4) 270 kcal 93. A man of 60 kg gains 1000 cal of heat by eating 5 mangoes. His efficiency is 56%. The height to which he can jump by using this energy is $g = 9.8m/s^2$, J = 4.2J/cal1) 4m 2) 20 m 3) 28 m 4) 0.2 m

94. Three rods A, B and C have the same dimensions. Their thermal conductivities K_A , K_B and K_C respectively. A and B are placed end to end, with the free ends kept at a certain temperature difference. C is placed separately with its ends kept at same temperature difference. The two arrangements conduct heat at the same rate K_C must be equal to

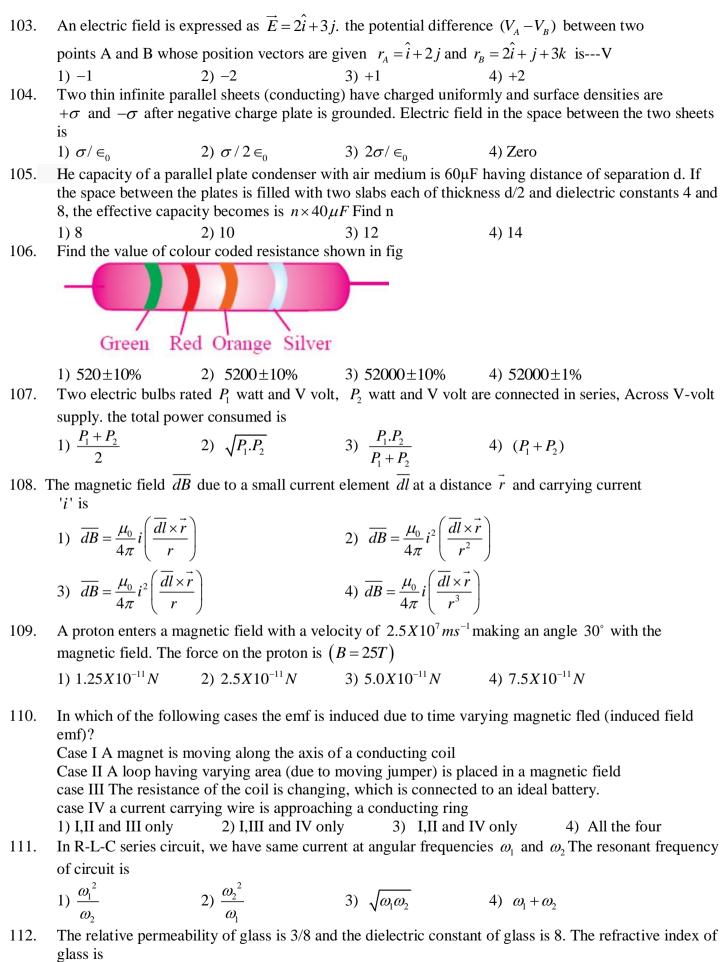
1)
$$K_A + K_B$$
 2) $\frac{K_A + K_B}{K_A K_B}$ 3) $\frac{1}{2}(K_A + K_B)$ 4) $\frac{K_A K_B}{K_A + K_B}$

95. Mass M = 1 unit is divided into two parts X and (1 - X). For a given separation the value of X for which the gravitational force between them becomes maximum is

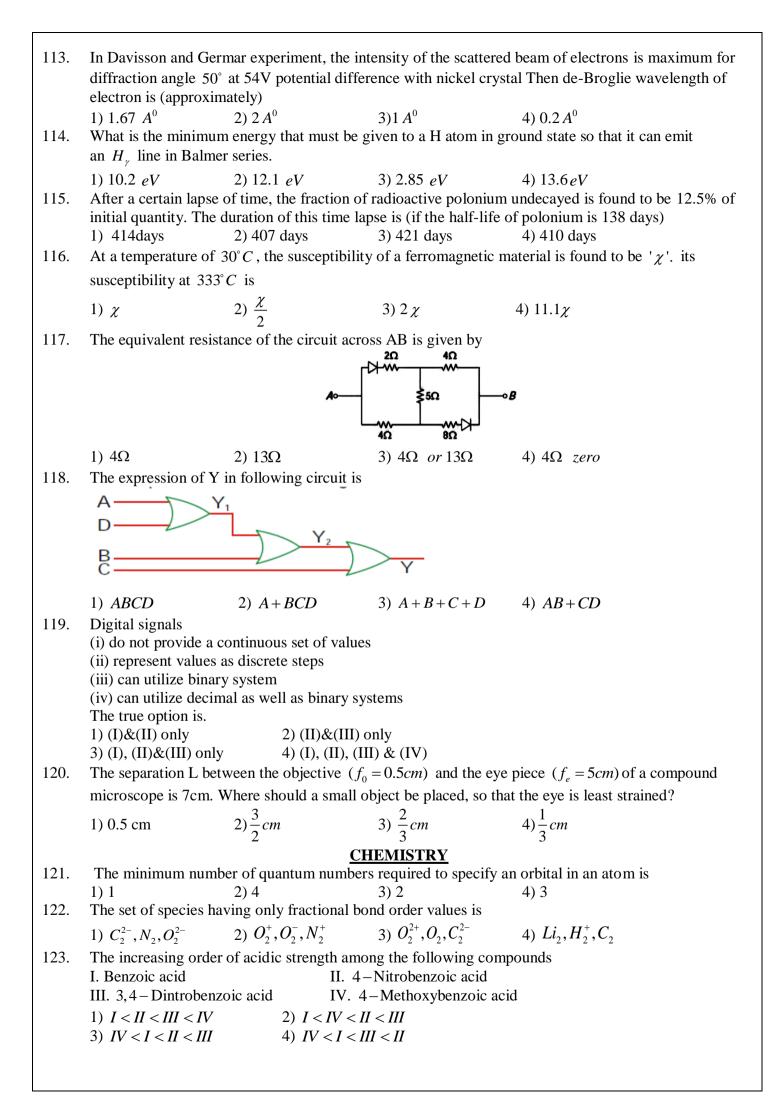
1)
$$\frac{1}{2}$$
 2) $\frac{3}{5}$ 3)1 4) 2

96. A simple pendulum of length l is connected to the ceiling of a vehicle that is moving down along a smooth inclined plane 4 in 5. then its period of oscillation is

1)
$$2\pi \sqrt{\frac{5l}{4g}}$$
 2) $2\pi \sqrt{\frac{4l}{5g}}$ 3) $2\pi \sqrt{\frac{5l}{3g}}$ 4) $2\pi \sqrt{\frac{3l}{5g}}$


97.An aluminium wire and a steel wire of the same length and cross-section are joined end to end. The
composite wire is hung from a rigid support and a load is suspended from the free end. If the increase
in the length of the composite wire is 2.7 mm, then the increase in the length of each wire is {in mm}.
1) 1.7,12) 1.3,1.43) 1.5,1.24) 2.1,0.6

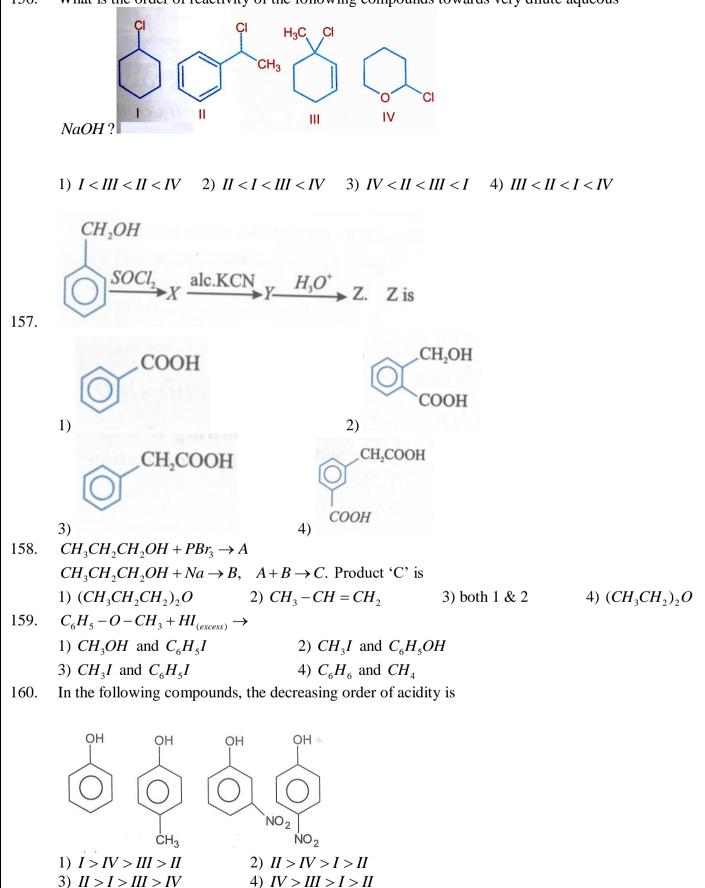
- 98. The excess pressure inside a spherical soap bubble of radius 1 cm is balanced by a column of oil (specific gravity =0.8),2 mm high, the surface tension of the bubble is 1) 3.92N/m 2) 0.0392N/m 3) 0.392N/m 4) 0.00392N/m
- 99. A tuning fork produces 6 beats/sec with sonometer wire when its tensions are either 169N or 196N. The frequency of that fork is
 1) 162 Hz
 2) 190 Hz
 3) 200 Hz
 4) 80 Hz


100.A ray reflected successively from two plane mirrors inclined at a certain angle undergoes a deviation of 300° .
The number of observable images
1) 602) 123) 114) 5

- 101.An equiconvex lens is cut into two equal parts along a plane perpendicular to the principal axis. If the
power of the original lens is 4D, the power of one of the two parts is
1) 2D2) 3D3) 4D4) 5D
- 102. In Young's double slit experiment, the 8th maximum with wavelength λ_1 is at a distance d_1 from the central maximum and the 6th maximum with wavelength λ_2 is at a distance d_2 from central maximum Then (d_1/d_2) is equal to

1)
$$\frac{4}{3}\left(\frac{\lambda_2}{\lambda_1}\right)$$
 2) $\frac{4}{3}\left(\frac{\lambda_1}{\lambda_2}\right)$ 3) $\frac{3}{4}\left(\frac{\lambda_2}{\lambda_1}\right)$ 4) $\frac{3}{4}\left(\frac{\lambda_1}{\lambda_2}\right)$

1) 1.7322) 1.3273) 1.6824) 2.582


Which of the following outer octahedral complexes have same number of unpaired electrons? 124. B. $[FeF_6]^{-3}$ C. $[CoF_6]^{3-}$ D. $\left\lceil Ni(NH_3)_6 \right\rceil^{2+}$ A. $[MnCl_6]^{3-}$ 1) *A*,*C* 2) A.B 3) *B*,*C* 4) A, D 125. The set with only ambidentate ligands in the following 1) NO_3 , Br, C_2O_4 2) NO_2 , CN, SCN 3) NO_2 , C_2O_4 , NH_3 4) SCN, CO, NH_3 $KMnO_4$ oxidises $S_2O_3^{2-}$ to SO_4^{2-} in medium x and NO_3^{-} in medium y, x and y are respectively. 126. 3) Acidic, neutral 1) Acidic, basic 2) Acidic, Acidic 4) Neutral, acidic 127. Which one of the following reactions does not take place? 1) $2CuSO_4(aq) + 4KI(aq)2CuI_2 + 2K_2SO_4$ 2) $2CuSO_4(aq) + 4KCI(aq)2CuCl_2 + 2K_2SO_4$ 3) $CuSO_{A}(aq) + Zn(aq)ZnSO_{A}(aq) + Cu(s)$ 4) $2CuSO_4(aq) + 4KF(aq)2CuF_2 + 2K_2SO_4$ The reduction potential of hydrogen electrode at $25^{\circ}C$ in a neutral solution is $(p_{H_2}=1bar)$ 128. 1) 0.059V 2) -0.059V3) -0.413V 4) 0.0VA commercial sample of H_2O_2 marked as 100 volume hydrogen peroxide means 129. 1) 1ml of H_2O_2 will give 100 ml of O_2 at STP 2) 1L of H_2O_2 will give 100 ml of O_2 at STP 3) 1 1 of the H_2O_2 will give 22.4 ml of O_2 at STP 4) 1ml of H_2O_2 will give 1 mole of O_2 at STP 130. Observe the following solutions, how many of them are acidic A. Black coffee B. 0.2*M* NaOH C. Lemon juice D. Lime water F. Tomato juice E. Human saliva 1) A, B, C 2) C, D, E, F 3) B, D only 4) A, C, E, F An organic compound A (C_6H_7N) on reaction with NaNO₂ / HCl at 273-278 K followed by 131. warming with water gave B. B reacts with conc. HNO₃ to give C. What is C? OH NO 1) 2) 3) 4) 132. Geo metrical isomerism can be found in which of the following? 2) Aspartic acid 3) Palmitic acid 4) Cinnamic acid 1) Butyric acid 133. Steam distillation process cannot be used for purifying which of the following?

1) Aniline2) p-nitrophenol3) Toluene4) Nitrobenzene134.The major product of the following reaction is3) Toluene3) Toluene

OD 1) 2) 3) 4) 135. Which of the following compounds do not have sp^3 carbon atom (s)? IV) Propyne V) Naphthalene I) Acetone II) Acetic III) Buta-1, 3-diene 2) II, III only 3) IV, V only 1) I,II only 4) III, V only Identify the ortho and para direction groups towards aromatic electrophilic substitution reactions from 136. the following list $-OH -CN -CO_2H$ $-NHCOCH_3$ -CHO $-OCH_3$ I Π Ш IV V VI 3) I, II, IV 2) II, III, VI 4) IV, V, VI 1) I, IV, V 137. Choose the incorrect statement among the following A. The reactivity of aromatic aldehydes and ketones is less that of aliphatic carbonyl compounds towards nucleophilic addition reactions B. Benzaldehyde does not give Fehling's test. C. The H atoms in ethanal are acidic in nature D. "p-Nitro benzaldehyde' is less reactive than "benzaldehyde" towards nucleophilic addition reaction 4) D 1) A 2) B 3) C 138. In the given reactions, 'X' and 'Y' respectively are $C_6H_5CH_2NH_2 \xleftarrow{X} C_6H_5CONH_2 \xrightarrow{Y} C_6H_5NH_2$ 1) $LiA1H_4, H_2O;$ Br_2 / OH 2) $Br_2 / OH^-;$ $LiA1H_4, H_2O$ 3) Br_2/H^+ ; $NaBH_4$ 4) $NaBH_4$; Br_2/H^+ 139. In which of the following pairs the polymer correctly matched with the forces possessed by them A. Neoprene---- Weak intermolecular forces B. Terylene---- Hydrogen bonding C. Polystyrene---- Very weak intermolecular forces D. Polythene---- Hydrogen bonding 1) B.C 2) C.D 3) A.B 4) A.D Identify A and B form the following reaction 140. $NaNO_3 \xrightarrow{\Delta} xA + yB$ 1) $NaNO_2, O_2$ 2) Na_2O, NO_2 3) *Na*₂*O*,*NO* 4) Na, NO_2 Energy levels A,B,C of a certain atoms corresponding to increasing values of energy level i.e., 141. $E_A < E_B < E_C$. If λ_3 are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively which of the following statement is correct? 2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ 3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ 4) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$ 1) $\lambda_3 = \lambda_1 + \lambda_2$ In which of the following molecules / ions all the bonds not equal? 142. 4) SiF_4 1) XeF_4 2) BF_{4} 3) SF_4 Which of the following contains maximum number of molecules 143. 1) 4 gm of hydrogen 2) 22. 4 liters of oxygen at S.T.P. 3) Carbon Dioxide obtained by heating 1 mole of calcium carbonate 4) 4 gm of helium 144. Oxidation number of carbon in carbon suboxide (C_3O_2)

1) $\frac{+2}{3}$ 2) $\frac{+4}{2}$ 4) $\frac{-4}{2}$ 3) + 4Two vessels of equal volume contain separately equal amounts of H_2 and CH_4 . If the first vessel is at 145. 300K and second vessel is at 600K, then the ratio of pressure inside them is 3) 4:1 1) 1:22) 2:1 4) 8:1 Oxygen is present in a flask of 1.12L capacity at a pressure of 7.6×10^{-10} mm of Hg at $0^{\circ}C$. The 146. number of oxygen molecules in the flask is 3) 3×10¹⁰ 1) 1.5×10^{10} 2) 3×10^{12} 4) 6×10^{12} The work done is heating one mole of an ideal gas at constant pressure from $15^{\circ}C$ to $25^{\circ}C$ is 147. 1) +19.87 cal 2) -198.7 cal 3) +198.7*cal* 4) -19.87 cal A system works under cyclic process as follows. 148. 30 $v(inm^3)$ 10 10 30 $P(inP_a)$ Heat absorbed during the process is 2) $\frac{22}{7} \times 10^3 J$ 3) $\frac{22}{7} \times 10^4 J$ 4) $\frac{22}{7} \times 10^5 J$ 1) $\frac{22}{7} \times 10^2 J$ For the homogeneous reaction $4NH_{3_{(g)}} + 5O_{2_{(g)}} \square 4NO_{(g)} + 6H_2O_{(g)}$ the equilibrium constant K_c has 149. the unit of 3) $(Conc)^{+10}$ 1) $(Conc)^{-1}$ 2) Conc 4) It is dimensionless The pH of a solution at $25^{\circ}C$ is 2. If its pH is to be changed to 4, then conc. of H^{+} of the original has 150. to be 2) Halved 4) Decreased by 100 times 1) Doubled 3) Increased by 100 times When CO_2 is passed into brine solution saturated with ammonia we get 151. 4) Na_2CO_3 1) $NH_{H}HCO_{3}$ 2) $(NH_4)_2 CO_3$ 3) Na HCO_3 Which of the following is/are correct? 152. 1) Al_2O_3 reacts with CaO but not with SiO_2 2) Thermal stability of carbonates; $BeCO_3 > MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$ 3) Solubility of sulphates: $BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$ 4) $BeCl_2$ fors acidic solution in water while $BaCl_2$ forms neutral solution. $H_3BO_3 \xrightarrow{375K} A \xrightarrow{\text{Red Heat}} B_2O_3$ 153. $H_3BO_3 \xrightarrow{435K} A \xrightarrow{\text{Red Heat}} B_2O_2$ The compounds A & B are 1) Orthoboric acid, metaboric acid 2) Metaboric acid, Tetra boric acid 3) Tetra boric acid, Metaboric acid 4) Tetra boric acid, orthoboric acid 154. The element that liberates H_2 gas with steam 1) C 2) Si 3) Sn 4) Ge 155. In which of the following reactions, H_2O_2 acts as a reducing reagent? 1) $PbO_{2(s)} + H_2O_{2(aq)} \rightarrow PbO_{(s)} + H_2O_{(l)} + O_{2(g)}$ 2) $Na_2SO_{3(ag)} + H_2O_{2(aq)} + \rightarrow Na_2SO_{4(aq)} + H_2O_{(l)}$ 3) $2KI_{(aq)} + H_2O_{2(aq)} \rightarrow 2KOH_{(aq)} + I_{2(s)}$ 4) All the above

156. What is the order of reactivity of the following compounds towards very dilute aqueous

MATHS									
01	02	03	04	05	06	07	08	09	10
3	1	3	3	3	4	3	2	2	1
11	12	13	14	15	16	17	18	19	20
2	3	1	1	1	3	3	2	1	3
21	22	23	24	25	26	27	28	29	30
2	1	3	2	3	2	4	2	1	4
31	32	33	34	35	36	37	38	39	40
2	1	1	4	3	1	1	1	4	3
41	42	43	44	45	46	47	48	49	50
3	2	3	3	1	3	3	1	3	2
51	52	53	54	55	56	57	58	59	60
2	1	3	2	2	2	4	1	3	4
61	62	63	64	65	66	67	68	69	70
2	3	2	1	4	3	2	2	3	4
71	72	73	74	75	76	77	78	79	80
1	3	2	4	4	3	2	3	3	3
				PHY	SICS				
81	82	83.	84	85	86	87	88	89	90
3	3	3	3	2	1	4	2	2	2
91	92	93	94	95	96	97	98	99	100
3	1	1	4	1	3	4	2	1	3
101	102	103	104	105	106	107	108	109	110
1	2	1	1	1	3	3	4	3	2
111	112	113	114	115	116	117	118	119	120
3	1	1	3	1	2	3	3	3	3
				CHEM	ISTRY				
121	122	123	124	125	126	127	128	129	130
4	2	3	1	2	4	1	3	1	4
131	132	133	134	135	136	137	138	139	140
1	4	2	4	4	1	4	1	3	1
141	142	143	144	145	146	147	148	149	150
2	3	1	2	3	3	4	3	2	4
151	152	153	154	155	156	157	158	159	160
3	4	2	3	1	1	3	1	2	4